
Mobile Cloud Computing - Keijo Heljanko (keijo.heljanko@aalto.fi)

1/57

Scalable Cloud Computing

Keijo Heljanko

Department of Information and Computer Science
School of Science
Aalto University

keijo.heljanko@aalto.fi

10.10-2012



Mobile Cloud Computing - Keijo Heljanko (keijo.heljanko@aalto.fi)

2/57

Guest Lecturer

I Guest Lecturer: Prof. Keijo Heljanko, Department of
Information and Computer Science, Aalto University,

I Email: keijo.heljanko@aalto.fi
I Homepage: http://users.ics.tkk.fi/kepa/

I For more info into today’s topic, attend the course:
“T-79.5308 Scalable Cloud Computing”

http://users.ics.tkk.fi/kepa/


Mobile Cloud Computing - Keijo Heljanko (keijo.heljanko@aalto.fi)

3/57

Business Drivers of Cloud Computing

I Large data centers allow for economics of scale
I Cheaper hardware purchases
I Cheaper cooling of hardware

I Example: Google paid 40 MEur for a Summa paper mill site
in Hamina, Finland: Data center cooled with sea water from
the Baltic Sea

I Cheaper electricity
I Cheaper network capacity
I Smaller number of administrators / computer

I Unreliable commodity hardware is used
I Reliability obtained by replication of hardware components

and a combined with a fault tolerant software stack



Mobile Cloud Computing - Keijo Heljanko (keijo.heljanko@aalto.fi)

4/57

Cloud Computing Technologies
A collection of technologies aimed to provide elastic “pay as
you go” computing

I Virtualization of computing resources: Amazon EC2,
Eucalyptus, OpenNebula, Open Stack Compute, . . .

I Scalable file storage: Amazon S3, GFS, HDFS, . . .
I Scalable batch processing: Google MapReduce, Apache

Hadoop, PACT, Microsoft Dryad, Google Pregel, Spark, . . .
I Scalable datastore: Amazon Dynamo, Apache Cassandra,

Google Bigtable, HBase,. . .
I Distributed Coordination: Google Chubby, Apache

Zookeeper, . . .
I Scalable Web applications hosting: Google App Engine,

Microsoft Azure, Heroku, . . .



Mobile Cloud Computing - Keijo Heljanko (keijo.heljanko@aalto.fi)

5/57

Clock Speed of Processors

I Herb Sutter: The Free Lunch Is Over: A Fundamental Turn
Toward Concurrency in Software. Dr. Dobb’s Journal, 30(3),
March 2005 (updated graph in August 2009).



Mobile Cloud Computing - Keijo Heljanko (keijo.heljanko@aalto.fi)

6/57

Implications of the End of Free Lunch

I The clock speeds of microprocessors are not going to
improve much in the foreseeable future

I The efficiency gains in single threaded performance are
going to be only moderate

I The number of transistors in a microprocessor is still
growing at a high rate

I One of the main uses of transistors has been to increase
the number of computing cores the processor has

I The number of cores in a low end workstation (as those
employed in large scale datacenters) is going to keep on
steadily growing

I Programming models need to change to efficiently exploit
all the available concurrency - scalability to high number of
cores/processors will need to be a major focus



Mobile Cloud Computing - Keijo Heljanko (keijo.heljanko@aalto.fi)

7/57

Scaling Up vs Scaling Out

I Scaling up: When the need for parallelism arises, a single
powerful computer is added with more CPU cores, more
memory, and more hard disks

I Scaling out: When the need for parallelism arises, the task
is divided between a large number of less powerful
machines with (relatively) slow CPUs, moderate memory
amounts, moderate hard disk counts

I Scalable cloud computing is trying to exploiting scaling out
instead of scaling up



Mobile Cloud Computing - Keijo Heljanko (keijo.heljanko@aalto.fi)

8/57

Warehouse-scale Computing (WSC)

I The smallest unit of computation in Google scale is:
Warehouse full of computers

I [WSC]: Luiz André Barroso, Urs Hölzle: The Datacenter as
a Computer: An Introduction to the Design of
Warehouse-Scale Machines Morgan & Claypool
Publishers 2009
http://dx.doi.org/10.2200/S00193ED1V01Y200905CAC006

I The WSC book says:
“. . . we must treat the datacenter itself as one massive
warehouse-scale computer (WSC).”

http://dx.doi.org/10.2200/S00193ED1V01Y200905CAC006


Mobile Cloud Computing - Keijo Heljanko (keijo.heljanko@aalto.fi)

9/57

Jeffrey Dean (Google): LADIS 2009 keynote failure
numbers

I LADIS 2009 keynote: “Designs, Lessons and Advice from
Building Large Distributed Systems”
http://www.cs.cornell.edu/projects/
ladis2009/talks/dean-keynote-ladis2009.pdf

I At warehouse-scale, failures will be the norm and thus fault
tolerant software will be inevitable

I Typical yearly flakiness metrics from J. Dean (Google,
2009):

I 1-5% of your disk drives will die
I Servers will crash at least twice (2-4% failure rate)

http://www.cs.cornell.edu/projects/ladis2009/talks/dean-keynote-ladis2009.pdf
http://www.cs.cornell.edu/projects/ladis2009/talks/dean-keynote-ladis2009.pdf


Mobile Cloud Computing - Keijo Heljanko (keijo.heljanko@aalto.fi)

10/57

Big Data

I As of May 2009, the amount of digital content in the world
is estimated to be 500 Exabytes (500 million TB)

I EMC sponsored study by IDC in 2007 estimates the
amount of information created in 2010 to be 988 EB

I Worldwide estimated hard disk sales in 2010:
≈ 675 million units

I Data comes from: Video, digital images, sensor data,
biological data, Internet sites, social media, . . .

I The problem of such large data massed, termed Big Data
calls for new approaches to storage and processing of data



Mobile Cloud Computing - Keijo Heljanko (keijo.heljanko@aalto.fi)

11/57

Google MapReduce

I A scalable batch processing framework developed at
Google for computing the Web index

I When dealing with Big Data (a substantial portion of the
Internet in the case of Google!), the only viable option is to
use hard disks in parallel to store and process it

I Some of the challenges for storage is coming from Web
services to store and distribute pictures and videos

I We need a system that can effectively utilize hard disk
parallelism and hide hard disk and other component
failures from the programmer



Mobile Cloud Computing - Keijo Heljanko (keijo.heljanko@aalto.fi)

12/57

Google MapReduce (cnt.)

I MapReduce is tailored for batch processing with hundreds
to thousands of machines running in parallel, typical job
runtimes are from minutes to hours

I As an added bonus we would like to get increased
programmer productivity compared to each programmer
developing their own tools for utilizing hard disk parallelism



Mobile Cloud Computing - Keijo Heljanko (keijo.heljanko@aalto.fi)

13/57

Google MapReduce (cnt.)

I The MapReduce framework takes care of all issues related
to parallelization, synchronization, load balancing, and fault
tolerance. All these details are hidden from the
programmer

I The system needs to be linearly scalable to thousands of
nodes working in parallel. The only way to do this is to
have a very restricted programming model where the
communication between nodes happens in a carefully
controlled fashion

I Apache Hadoop is an open source MapReduce
implementation used by Yahoo!, Facebook, and Twitter



Mobile Cloud Computing - Keijo Heljanko (keijo.heljanko@aalto.fi)

14/57

MapReduce and Functional Programming

I Based on the functional programming in the large:
I User is only allowed to write side-effect free functions

“Map” and “Reduce”
I Re-execution is used for fault tolerance. If a node executing

a Map or a Reduce task fails to produce a result due to
hardware failure, the task will be re-executed on another
node

I Side effects in functions would make this impossible, as
one could not re-create the environment in which the
original task executed

I One just needs a fault tolerant storage of task inputs
I The functions themselves are usually written in a standard

imperative programming language, usually Java



Mobile Cloud Computing - Keijo Heljanko (keijo.heljanko@aalto.fi)

15/57

Why No Side-Effects?

I Side-effect free programs will produce the same output
irregardless of the number of computing nodes used by
MapReduce

I Running the code on one machine for debugging purposes
produces the same results as running the same code in
parallel

I It is easy to introduce side-effect to MapReduce programs
as the framework does not enforce a strict programming
methodology. However, the behavior of such programs is
undefined by the framework, and should therefore be
avoided.



Mobile Cloud Computing - Keijo Heljanko (keijo.heljanko@aalto.fi)

16/57

Yahoo! MapReduce Tutorial

I We use a Figures from the excellent MapReduce tutorial of
Yahoo! [YDN-MR], available from:
http://developer.yahoo.com/hadoop/tutorial/
module4.html

I In functional programming, two list processing concepts
are used

I Mapping a list with a function
I Reducing a list with a function

http://developer.yahoo.com/hadoop/tutorial/module4.html
http://developer.yahoo.com/hadoop/tutorial/module4.html


Mobile Cloud Computing - Keijo Heljanko (keijo.heljanko@aalto.fi)

17/57

Mapping a List

Mapping a list applies the mapping function to each list element
(in parallel) and outputs the list of mapped list elements:

Figure: Mapping a List with a Map Function, Figure 4.1 from
[YDN-MR]



Mobile Cloud Computing - Keijo Heljanko (keijo.heljanko@aalto.fi)

18/57

Reducing a List
Reducing a list iterates over a list sequentially and produces an
output created by the reduce function:

Figure: Reducing a List with a Reduce Function, Figure 4.2 from
[YDN-MR]



Mobile Cloud Computing - Keijo Heljanko (keijo.heljanko@aalto.fi)

19/57

Grouping Map Output by Key to Reducer
In MapReduce the map function outputs (key, value)-pairs.
The MapReduce framework groups map outputs by key, and
gives each reduce function instance (key, (..., list of
values, ...)) pair as input. Note: Each list of values
having the same key will be independently processed:

Figure: Keys Divide Map Output to Reducers, Figure 4.3 from
[YDN-MR]



Mobile Cloud Computing - Keijo Heljanko (keijo.heljanko@aalto.fi)

20/57

MapReduce Data Flow
Practical MapReduce systems split input data into large
(64MB+) blocks fed to user defined map functions:

Figure: High Level MapReduce Dataflow, Figure 4.4 from [YDN-MR]



Mobile Cloud Computing - Keijo Heljanko (keijo.heljanko@aalto.fi)

21/57

Recap: Map and Reduce Functions

I The framework only allows a user to write two functions: a
“Map” function and a “Reduce” function

I The Map-function is fed blocks of data (block size
64-128MB), and it produces (key, value) -pairs

I The framework groups all values with the same key to a
(key, (..., list of values, ...)) format, and
these are then fed to the Reduce function

I A special Master node takes care of the scheduling and
fault tolerance by re-executing Mappers or Reducers



Mobile Cloud Computing - Keijo Heljanko (keijo.heljanko@aalto.fi)

22/57

Google MapReduce

I The user just supplies the Map and Reduce functions,
nothing more

I The only means of communication between nodes is
through the shuffle from a mapper to a reducer

I The framework can be used to implement a distributed
sorting algorithm by using a custom partitioning function

I The framework does automatic parallelization and fault
tolerance by using a centralized Job tracker (Master) and a
distributed filesystem that stores all data redundantly on
compute nodes

I Uses functional programming paradigm to guarantee
correctness of parallelization and to implement
fault-tolerance by re-execution



Mobile Cloud Computing - Keijo Heljanko (keijo.heljanko@aalto.fi)

23/57

Apache Hadoop

I An Open Source implementation of the MapReduce
framework, originally developed by Doug Cutting and
heavily used by e.g., Yahoo! and Facebook

I “Moving Computation is Cheaper than Moving Data” - Ship
code to data, not data to code.

I Map and Reduce workers are also storage nodes for the
underlying distributed filesystem: Job allocation is first tried
to a node having a copy of the data, and if that fails, then to
a node in the same rack (to maximize network bandwidth)

I Project Web page: http://hadoop.apache.org/

http://hadoop.apache.org/


Mobile Cloud Computing - Keijo Heljanko (keijo.heljanko@aalto.fi)

24/57

Apache Hadoop (cnt.)

I Tuned for large (gigabytes of data) files
I Designed for very large 1 PB+ data sets
I Designed for streaming data accesses in batch processing,

designed for high bandwidth instead of low latency
I For scalability: NOT a POSIX filesystem
I Written in Java, runs as a set of user-space daemons



Mobile Cloud Computing - Keijo Heljanko (keijo.heljanko@aalto.fi)

25/57

Hadoop Distributed Filesystem (HDFS)

I A distributed replicated filesystem: All data is replicated by
default on three different Data Nodes

I Inspired by the Google Filesystem
I Each node is usually a Linux compute node with a small

number of hard disks (4-12)
I A single NameNode that maintains the file locations, many

DataNodes (1000+)



Mobile Cloud Computing - Keijo Heljanko (keijo.heljanko@aalto.fi)

26/57

Hadoop Distributed Filesystem (cnt.)

I Any piece of data is available if at least one datanode
replica is up and running

I Rack optimized: by default one replica written locally,
second in the same rack, and a third replica in another rack
(to combat against rack failures, e.g., rack switch or rack
power feed)

I Uses large block size, 128 MB is a common default -
designed for batch processing

I For scalability: Write once, read many filesystem



Mobile Cloud Computing - Keijo Heljanko (keijo.heljanko@aalto.fi)

27/57

Implications of Write Once

I All applications need to be re-engineered to only do
sequential writes. Example systems working on top of
HDFS:

I HBase (Hadoop Database), a database system with only
sequential writes, Google Bigtable clone

I MapReduce batch processing system
I Apache Pig and Hive data mining tools
I Mahout machine learning libraries
I Lucene and Solr full text search
I Nutch web crawling



Mobile Cloud Computing - Keijo Heljanko (keijo.heljanko@aalto.fi)

28/57

Two Large Hadoop Installations

I Yahoo! (2009): 4000 nodes, 16 PB raw disk, 64TB RAM,
32K cores

I Facebook (2010): 2000 nodes, 21 PB storage, 64TB RAM,
22.4K cores

I 12 TB (compressed) data added per day, 800TB
(compressed) data scanned per day

I A. Thusoo, Z. Shao, S. Anthony, D. Borthakur, N. Jain, J.
Sen Sarma, R. Murthy, H. Liu: Data warehousing and
analytics infrastructure at Facebook. SIGMOD Conference
2010: 1013-1020.
http://doi.acm.org/10.1145/1807167.1807278

http://doi.acm.org/10.1145/1807167.1807278


Mobile Cloud Computing - Keijo Heljanko (keijo.heljanko@aalto.fi)

29/57

Apache Pig

I Apache Pig is a scripting language that compiles scripting
language into a Java MapReduce program

I Apache Pig allows for much improved programmer
productivity over writing MapReduce programs in Java

I For more information, see: http://pig.apache.org/
I Apache Hive (http://hive.apache.org/) is another

high-level language for expressing MapReduce programs.
Unlike Pig that looks like a scripting language, Hive is
closely related to SQL

http://pig.apache.org/
http://hive.apache.org/


Mobile Cloud Computing - Keijo Heljanko (keijo.heljanko@aalto.fi)

30/57

Hadoop Books

I I can warmly recommend the Book:
I Tom White: “Hadoop: The Definitive Guide, Second

Edition”, O’Reilly Media, 2010. Print ISBN:
978-1-4493-8973-4, Ebook ISBN: 978-1-4493-8974-1.
http://www.hadoopbook.com/

I An alternative book is:
I Chuck Lam: “Hadoop in Action”, Manning, 2010. Print

ISBN: 9781935182191.

http://www.hadoopbook.com/


Mobile Cloud Computing - Keijo Heljanko (keijo.heljanko@aalto.fi)

31/57

Commercial Hadoop Support

I Cloudera: A Hadoop distribution based on Apache Hadoop
+ patches. Available from:
http://www.cloudera.com/

I Hortonworks: Yahoo! spin-off of their Hadoop development
team, will be working on mainline Apache Hadoop.
http://www.hortonworks.com/

I MapR: A rewrite of much of Apache Hadoop in C++,
including a new filesystem. API-compatible with Apache
Hadoop.
http://www.mapr.com/

Many systems also support Apache Pig (high-level scripting
language for MapReduce)

http://www.cloudera.com/
http://www.hortonworks.com/
http://www.mapr.com/


Mobile Cloud Computing - Keijo Heljanko (keijo.heljanko@aalto.fi)

32/57

Cloud Storage - Node Local Storage

There are many different kinds of storage systems employed in
clouds:

I Node local storage
I Local hard disks
I Often used for temporary data and binaries
I High performance but quite often storage needs to be

over-provisioned, as unused storage can not be easily
shared to other nodes

I Even if RAID is used for data redundancy, the server itself
is a single point of failure



Mobile Cloud Computing - Keijo Heljanko (keijo.heljanko@aalto.fi)

33/57

Cloud Storage - Network Block Device

I Network block devices
I Examples: Amazon EBS, Ceph RBD (Rados block device),

Sheepdog project
I Virtual block devices accessed over the network, often with

RAID 1-like durability (mirroring)
I Many systems only allow mounting each block device by

one client. Can be made very scalable by serving different
clients by different storage servers

I More traditional alternatives with less automatic
management: Linux DRBD (Distributed Replicated Block
Device), SAN storage over iSCSI



Mobile Cloud Computing - Keijo Heljanko (keijo.heljanko@aalto.fi)

34/57

Cloud Storage - POSIX Filesystems

I POSIX filesystems
I Examples: NFS, Lustre
I Shared POSIX filesystems accessed by several clients
I Often of quite limited scalability due to sharing the

metadata of a distributed namespace between clients.
Metadata updates are handled by a single server

I High end storage solutions are not cheap - this approach is
using scaling up strategy instead of scaling out



Mobile Cloud Computing - Keijo Heljanko (keijo.heljanko@aalto.fi)

35/57

Cloud Storage (cnt.)

I Distributed non-POSIX filesystems
I Examples: GFS, HDFS
I Tailored for big files and write-once-read-many (WORM)

workloads. Are very scalable in these usage scenarios
I Both GFS and HDFS are moving towards having more than

one metadata server (GFS v2, Hadoop 0.23), as currently
this it still is the bottleneck in large (1000+) node clusters



Mobile Cloud Computing - Keijo Heljanko (keijo.heljanko@aalto.fi)

36/57

Cloud Storage (cnt.)

I Scalable object stores
I Example: Amazon S3, Openstack Swift (developed by

Rackspace)
I S3 is a geographically replicated storage system, each data

item is stored in at least two geographically remote
datacenters by default

I No nested filesystem directory hierarchy available: Objects
are stored in buckets. Each stored item is accessed by a
unique identifier

I Amazon S3 has been designed for 99.999999999%
durability and 99.99% availability of objects over a given
year. One needs geographic replication to achieve the
durability goal



Mobile Cloud Computing - Keijo Heljanko (keijo.heljanko@aalto.fi)

37/57

Cloud Datastores (Databases)

I Quite often the term Datastore is used for database
systems developed for the cloud, as they often do not fully
support all features of traditional relational databases
(RDBMS)

I Other term used often is NoSQL databases, as the original
systems did not support SQL. However, some SQL
support is getting added also to cloud datastores, so the
term is getting outdated quite fast

I The cloud datastores can be grouped by many
characteristics



Mobile Cloud Computing - Keijo Heljanko (keijo.heljanko@aalto.fi)

38/57

Consistency & Availability in Distributed
Databases

We define the three general properties of distributed databases
popularized by Eric Brewer:

I Consistency (as defined by Brewer): All nodes have a
consistent view of the contents of the (distributed)
database

I Availability: A guarantee that every database request
eventually receives a response about whether it was
successful or whether it failed

I Partition Tolerance: The system continues to operate
despite arbitrary message loss



Mobile Cloud Computing - Keijo Heljanko (keijo.heljanko@aalto.fi)

39/57

Brewer’s CAP Theorem

I In a PODC 2000 conference invited talk Eric Brewer made
a conjecture that it is impossible to create a distributed
asynchronous system that is at the same time satisfies all
three CAP properties:

I Consistency
I Availability
I Partition tolerance

I This conjecture was proved to be a Theorem in the paper:
“Seth Gilbert and Nancy A. Lynch. Brewer’s conjecture and
the feasibility of consistent, available, partition-tolerant web
services. SIGACT News, 33(2):51-59, 2002.”



Mobile Cloud Computing - Keijo Heljanko (keijo.heljanko@aalto.fi)

40/57

Brewer’s CAP Theorem

Because it is impossible to have all three, you have to choose
between two of CAP:

I CA: Consistent & Available but not Partition tolerant
I A non-distributed (centralized) database system

I CP: Consistent & Partition Tolerant but not Available
I A distributed database that can not be modified when

network splits to partitions
I AP: Available & Partition Tolerant but not Consistent

I A distributed database that can become inconsistent when
network splits into partitions



Mobile Cloud Computing - Keijo Heljanko (keijo.heljanko@aalto.fi)

41/57

Example CA Systems

I Single-site (non-distributed) databases
I LDAP - Lightweight Directory Access Protocol (for user

authentication)
I NFS - Network File System
I Centralized version control - Svn
I HDFS Namenode

These systems are often based on two-phase commit
algorithms, or cache invalidation algorithms.



Mobile Cloud Computing - Keijo Heljanko (keijo.heljanko@aalto.fi)

42/57

Example CP Systems

I Distributed databases - Example: Google Bigtable, Apache
HBase

I Distributed coordination systems - Example: Google
Chubby, Apache Zookeeper

The systems often use a master copy location for data
modifications combined with pessimistic locking or majority
(aka quorum) algorithms such as Paxos by Leslie Lamport.



Mobile Cloud Computing - Keijo Heljanko (keijo.heljanko@aalto.fi)

43/57

Example AP Systems

I Filesystems allowing updates while disconnected from the
main server such as AFS and Coda.

I Web caching
I DNS - Domain Name System
I Distributed version control system - Git
I “Eventually Consistent” Datastores - Amazon Dynamo,

Apache Cassandra

The employed mechanisms include cache expiration times and
leases. Sometimes intelligent merge mechanisms exists for
automatically merging independent updates.



Mobile Cloud Computing - Keijo Heljanko (keijo.heljanko@aalto.fi)

44/57

Scalable Cloud Data Store Features

A pointer to comparison of the different cloud datastores is the
survey paper: “Rick Cattell: Scalable SQL and no-SQL Data
Stores, SIGMOD Record, Volume 39, Number 4, December
2010”.
http://www.sigmod.org/publications/
sigmod-record/1012/pdfs/04.surveys.cattell.pdf

http://www.sigmod.org/publications/sigmod-record/1012/pdfs/04.surveys.cattell.pdf
http://www.sigmod.org/publications/sigmod-record/1012/pdfs/04.surveys.cattell.pdf


Mobile Cloud Computing - Keijo Heljanko (keijo.heljanko@aalto.fi)

45/57

Scalable Cloud Data Store Features (cnt.)
The Cattell paper lists some key features many of these new
datastores include (no single system contains all of these!):

I The ability to horizontally scale “simple operation”
throughput over many servers

I The ability to automatically replicate and to distribute
(partition/shard) data over many servers

I A simple call level interface or protocol (vs SQL)
I A weaker concurrency model than the ACID transactions

of most relational (SQL) database systems
I Efficient use of distributed indexes and RAM for data

storage
I The ability to dynamically add new attributes to data

records (no fixed data schema)



Mobile Cloud Computing - Keijo Heljanko (keijo.heljanko@aalto.fi)

46/57

A Grouping of Data Stores
I Key-value stores

I Examples: Project Voldemort, Redis, Scalaris, Apache
Cassandra (partially)

I A unique primary key is used to access a data item that is
usually a binary blob, but some systems also support more
structured data

I Quite often use peer-to-peer technology such as distributed
hash table (DHT) and consistent hashing to shard data and
allow elastic addition and removal of servers

I Some systems use only RAM to store data (and are used
as memcached replacements), others also persist data to
disk and can be used as persistent database replacements

I Most systems are AP systems but some (Scalaris) support
local row level transactions

I Cassandra is hard to categorize as it uses DHT, is an AP
system, but has a very rich data model



Mobile Cloud Computing - Keijo Heljanko (keijo.heljanko@aalto.fi)

47/57

A Grouping of Data Stores

I Document Stores
I Examples: Amazon SimpleDB, CouchDB, MongoDB
I For storing structured documents (think, e.g., XML)
I Do not usually support transactions or ACID semantics
I Usually allow very flexible indexing by many document

fields
I Main focus on programmer productivity, not ultimate data

store scalability



Mobile Cloud Computing - Keijo Heljanko (keijo.heljanko@aalto.fi)

48/57

A Grouping of Data Stores - Extensible Record
Stores

I Extensible Record Stores (aka “BigTable clones”)
I Examples: Google BigTable, Google Megastore, Apache

HBase, Hypertable, Apache Cassandra (partially)
I Google BigTable paper gave a new database design

approach that the other systems have emulated
I BigTable is based on a write optimized design: Read

performance is sacrificed to obtain more write performance
I Other notable features: Consistent and Partition tolerant

(CP) design, Automatic sharding on primary key, and a
flexible data model (more details later)



Mobile Cloud Computing - Keijo Heljanko (keijo.heljanko@aalto.fi)

49/57

A Grouping of Data Stores - Scalable Relational
Systems

I Scalable Relational Systems (aka Distributed Databases)
I Examples: MySQL Cluster, VoltDB, Oracle Real Application

Clusters (RAC)
I Data sharded over a number of database servers
I Usually automatic replication of data to several servers

supported
I Usually SQL database access + support for full ACID

transactions
I For scalability joins that span multiple database servers or

global transactions should not be used by applications
I Scalability to very large (100+) database servers not

demonstrated yet but there is no inherent reason why this
could not be done



Mobile Cloud Computing - Keijo Heljanko (keijo.heljanko@aalto.fi)

50/57

Eventual Consistency / BASE

I The term “Eventually Consistent” was popularized by the
authors of Amazon Dynamo, which is a datastore that is an
AP system - accessible and partition tolerant

I Also the term BASE (basically available, soft state,
eventually consistent) is a synonym for the same approach

I Basically these are datastores that value accessibility over
data consistency

I Quite often they offer support to automatically resolve
some of the inconsistencies using e.g., version numbering

I Example systems: Amazon Dynamo, Apache Cassandra



Mobile Cloud Computing - Keijo Heljanko (keijo.heljanko@aalto.fi)

51/57

Scalable Data Stores - Future Speculation
I Long running serializable global transactions are very hard

to implement efficiently, for scalability they should be
avoided at all costs. Counterexample: Google Percolator

I The requirements of low latency and high availability make
AP solutions attractive but they are more difficult to use for
the programmer (need to provide application specific data
inconsistency recovery routines!) than CP systems

I The time of “one size fits all”, where a RDBMS was a
solution to all datastore problems has passed, and
scalable cloud data stores are here to stay

I ACID transactions are needed for, e.g., financial
transactions, and there traditional RDBMS will be dominant

I Many of the new systems are not yet proven in production
I There will be a consolidation to a smaller number of data

stores, once the “design space exploration” settles down



Mobile Cloud Computing - Keijo Heljanko (keijo.heljanko@aalto.fi)

52/57

BigTable

I Described in the paper: “Fay Chang, Jeffrey Dean, Sanjay
Ghemawat, Wilson C. Hsieh, Deborah A. Wallach, Michael
Burrows, Tushar Chandra, Andrew Fikes, Robert E.
Gruber: Bigtable: A Distributed Storage System for
Structured Data. ACM Trans. Comput. Syst. 26(2): (2008)”

I A highly scalable consistent and partition tolerant datastore
I Implemented on top of the Google Filesystem (GFS)
I GFS provides data persistence by replication but only

supports sequential writes
I BigTable design does no random writes, only sequential

writes are used
I Open source clone: Apache HBase



Mobile Cloud Computing - Keijo Heljanko (keijo.heljanko@aalto.fi)

53/57

BigTable Data Model

I Bigtable paper describes itself as: ”. . . a sparse,
distributed, persistent multi-dimensional sorted map”

I Namely, BigTable stores data as strings, which can be
accessed by three coordinates:

I row - an arbitrary string row key (10-100 bytes typical, max
64 KB)

I column - a column key, consisting of a column family and
column qualifier (name) in syntax family:qualifier

I timestamp - a 64 bit integer that can be used to store a
timestamp

I Thus we have a map with three coordinates:
(row:string, column:string, time:int64) ->
string



Mobile Cloud Computing - Keijo Heljanko (keijo.heljanko@aalto.fi)

54/57

BigTable Conclusions

I BigTable is a scalable write optimized database design
I It uses only sequential writes for improved write

performance
I For read intensive workloads BigTable can be a good fit if

all of the working set fits into DRAM
I For read intensive working sets much larger than DRAM,

traditional RDBMS systems are still a better match



Mobile Cloud Computing - Keijo Heljanko (keijo.heljanko@aalto.fi)

55/57

Apache HBase

I Apache HBase is an open source Google BigTable clone
I It very closely follows the BigTable design but has the

following differences
I Instead of GFS, HBase runs on top of HDFS
I Instead of Chubby, HBase uses Apache Zookeeper
I SSTable of BigTable are called in HBase HFile (and HFile

V2)
I HBase only partially supports fully memory mapped data



Mobile Cloud Computing - Keijo Heljanko (keijo.heljanko@aalto.fi)

56/57

Distributed Coordination Services

I Maintaining a global database image under node failures is
a very subtle problem, see FLP Theorem in: “Michael J.
Fischer, Nancy A. Lynch, Mike Paterson: Impossibility of
Distributed Consensus with One Faulty Process J. ACM
32(2): 374-382 (1985)”

I The Paxos algorithm is a very tricky algorithm that will be
able to replicate a distributed database if enough servers
are up and running



Mobile Cloud Computing - Keijo Heljanko (keijo.heljanko@aalto.fi)

57/57

Distributed Coordination Services (cnt.)

I From an applications point of view the distributed
coordination services should be used to store global
shared state: Global configuration data, global locks, live
master server locations, live slave server locations, etc.

I One should use centralized infrastructure such as Google
Chubby or Apache Zookeeper to only implement these
tricky fault tolerance algorithms only once


